データサイエンスと機械学習の世界で広く利用されている主要な学習モデルについて、それぞれの概要、そして実践におけるメリットとデメリットを解説します。Pythonのコードで実際に試されることが多いこれらのモデルは、データのパターンを学習し ...
データアナリスト/データサイエンティストのためのカジュアルな勉強会「Data Gateway Talk」。「GBDTアルゴリズム」というテーマで登壇した工学院大学情報学部コンピュータ科学科のYasshieeee氏は、勾配ブースティングの基本、そしてアルゴリズム「XGBoost ...
こちらが超基本のイメージ。 もう少し細かく整理しておきます。 精度が伸び悩むときは:learning_rate を下げて iterations を上げるのが定石。 過学習が疑われるときは:min_child_weight や l2_leaf_reg を上げて抑制。 カテゴリ変数が多いときは:CatBoostが便利(cat ...